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CHANGES IN IMPEDANCES OF Ni/Cd CELLS WITH VOLTAGE AND
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Abstract-Impedances of aerospace design Super Ni/Cd cells arebei-

ng measured as functions of voltage and number of cycles. The

cells have been cycled over 4400 cycles to date. Analysis of the

impedance data has been made using a number of equivalent cir-

cuits. The model giving the best fit over the whole range of

voltage has a parallel circuit of a kinetic resistance and a

constant phase element in series with the ohmic resistance. The
values for the circuit elements have been treated as empirical

parameters, and no attempt has been made as yet to correlate them

with physical and chemical changes in the electrode. No signifi-

cant changes have been seen as yet with the exception of a
decrease in kinetic resistance at low states of charge in the

first 500 cycles.

INTRODUCTION

As part of a long-term study of the feasibility of using imped-

ance spectroscopy for prediction of cycle life and diagnosis of

failures in space flight cells, measurements are being taken on

two 19 AH aerospace design Super Ni/Cd cells. The cells are

being cycled in a low earth orbit (LEO) regime to 50% state of

charge (SOC). Impedances are being measured periodically at

eight voltages over the entire range of state of charge. The

cells have now been cycled for over 4400 cycles, equivalent to
nine months in LEO. The use of sealed cells is essential in

studying the effects of long-term cycling in order to avoid

changes in electrolyte composition. Unfortunately, the cadmium

electrode is connected to the case, so the impedances of the

individual electrodes cannot be determined separately by using

the case as a reference as was done earlier [I]. Parallel

studies being carried out in sealed Ni/H 2 cells where the imped-

ance is essentially that of the Ni electrode should help in

assigning the contributions to the individual electrodes.

Most earlier measurements in this laboratory were made on Ni/H 2

cells and Ni electrodes at very low states of charge where the

greatest differences between cells and electrodes from different

manufacturers were observed. The measurements at very low

frequencies (0.05 to 0.001Hz) were the most useful. Measure-

ments at these low frequencies and voltages are time consuming

and are not suitable for routine monitoring of cells on test.

One goal of the present study is to develop criteria for



monitoring cells at higher states of charge and frequencies so

that it can be done routinely.

EXPERIMENTAL

The cells are being cycled at room temperature to 50% SOC in a

low earth orbit cycle consisting of a 55 minute charge and a 35

minute discharge. The charge�discharge ratio is 1.05 and the

cutoff on discharge is 1.00 V. (The manufacturer, Hughes Air-

craft Company, specifies that the cells should not be discharged

below this except for brief periods for reconditioning).

Acceptance tests were performed at TRW before we obtained the

cells. Five formation cycles were carried out upon receipt.

Impedance measurements were taken then and after 100, 500, 1000,

1500, 2000, and 3000 cycles. Subsequent measurements will be

taken after each 1500 cycles unless signs of failure are noted.

A Solartron 1250 FRA and 1186 Electrochemical Interface were used

to take the impedance measurements, controlled by the ZPLOT

computer program [2]. Measurements are made from 1000 Hz to

0.001Hz using an AC signal of 1 mV RMS (5 mV RMS at the lowest

frequencies and voltages). The data show considerable scatter at

both high and low frequencies, so the automatic integration

feature of the instrument is used. At high frequencies measure-

ments are taken at each point until the standard deviation is

within 1% of the average. A maximum of 200 cycles is used, which

takes very little time. However, this is not true at low fre-

quencies, so fewer cycles must be used in order to carry out the

measurements in a reasonable time. At the lowest frequencies, up

to eight cycles are needed to obtain satisfactory accuracy. This

means that considerable time is required, up to 3-4 hours, to

measure the complete frequency range at each voltage.

The measurements are initiated starting with the cell fully

charged. Before making each measurement, the cells are dis-

charged slowly to the desired voltage and equilibrated until the

DC current falls to a few mA.

RESULTS AND DISCUSSION

The two cells currently being cycled have not failed (as defined

by loss of 50% of capacity to a 1.0 V cutoff). One cell, howev-

er, has appeared to lose some of its capacity and was recondi-

tioned at 3000 cycles and again after about 4400 cycles by

discharging to 0.800 V instead of the usual 1.00 V. At 3000

cycles about 18% of the nominal capacity was in the second

plateau and about 30% at 4400 cycles. After reconditioning, the

capacity to the 1.00 V cutoff was recovered. The anticipated

life is about 20,000 cycles under these conditions of temperature
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and depth of discharge. Complex plane plots are shown in Fig-

ure 1 for one of the cells after 3000 cycles.

A preliminary analysis can be made within the ZPLOT program

assuming the equivalent circuit of Fig. 2a. The data are ob-

tained by analysis of the plots generated by the program. Some

typical data are given in Table I as functions of state of charge

(SOC). --

So far there has been little change in these parameters with

cycling at the higher states of charge. At low states of charge

(below 10%), the kinetic resistance and Warburg slope fell

initially but have remained reasonably constant since. This can

be interpreted as an initial improvement in the electrode,

followed by a long period of constant behavior. No signature for

prediction of end of life has been seen as yet.

This circuit, although easy to analyze, does not give a good fit

to the experimental data over the whole range of voltages. In

order to analyze the data further, two complex nonlinear least

squares fitting programs are being used [3]. These have the

capability of incorporating several additional circuit elements

as well as analyzing more complex equivalent circuits. In

addition, they remove the subjectivity of determining slopes and

radii of circles from graphs. (All circuits discussed here

include an inductance of about 7 x 10 -_ Henry, which does not

affect the other parameters and will not be discussed further).

Since both electrodes in the Ni/Cd cell are expected to con-

tribute to the impedance, it would be desirable to use a circuit

such as Fig. 2b or some modification of this with separate

subcircuits for each electrode. The computer programs can

mathematically fit the data to such models fairly well, but

because we have no independent data for each electrode, i.e., no

reference electrode against which to measure the impedance of

each electrode separately, the parameters obtained do not follow

regular trends with voltage and cycle history and thus are

meaningless. Since one of the major goals of this program is to

find parameters for comparison between different cells and as

functions of cycling history, further work with this type of

circuit was abandoned.

If we look again at circuits which lump the parameters for both

electrodes into a circuit corresponding to a single electrode, we

find that the circuit of Fig. 2c has been found to give the best

fit at low voltages, both for Ni/H 2 cells and for Ni/Cd cells

(voltages below about 1.30 V for NI/H 2 cells and 1.26 V for Ni/Cd

cells, corresponding to states of charge below about 20%). In

the Ni/H 2 cell the impedance of the hydrogen electrode is negli-

gible compared to that of the Ni electrode, so the assumption is

that this essentially represents the impedance of the Ni elec-

trode. This is probably true for Ni/Cd cells at low voltages,
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i.e., the impedance of the Ni electrode is apparently much larger

than that of the Cd electrode so that the cell impedance again is

essentially that of the Ni electrode. The second RC circuit can

be interpreted as an adsorption capacitance and resistance.

Unfortunately, this circuit cannot fit the data at higher volt-

ages for either Ni/H 2 or Ni/Cd cells.

The circuit of Fig. 2d has been found to fit the data for Ni/H 2

cells satisfactorily over the whole range of voltages but cannot

fit the data for Ni/Cd cells at higher voltages. This circuit

incorporates a constant phase element in parallel with a resis-

tance and a second constant phase element [3]. The combination

of a constant phase element in parallel with a resistance, giving

a depressed semicircle in the complex plane plot, has been inter-

preted as due to the fractal nature of the electrode [4]. The

second constant phase element could be interpreted as simulating

the Warburg diffusion.

The circuit of Fig. 2e has been the only circuit found so far

that fits the experimental data for Ni/Cd cells fairly satis-

factorily over the whole voltage range even though it is not

quite as good at low voltages as the circuit of Fig. 2c. In

addition, the values for the circuit elements follow regular

trends with voltage. Thus it has been selected for detailed

analysis of all of the data sets. A possible physical explana-

tion for the components would involve an ohmic resistance plus a

kinetic resistance in parallel with a diffusion element. Fig. 3

shows a comparison of the experimental and calculated complex

plane plots for several data sets. The data of Figure 3b is fit

better by circuit 2c, but the rest of the data is fit better by

circuit 2e. Some of the values for the circuit elements are

shown in Table II. The values of the ohmic and kinetic resis-

tances and the capacitance component of the constant phase

element are of the same order of magnitude as those of the first

circuit, as can be seen by comparison with the data in Table I.

Some of the parameters obtained using this circuit are plotted in

Figures 4, 5, and 6. The two fitting programs give almost

identical results, provided that the weighing factors are the

same. The trends in the parameters with cycling are similar to

those found for circuit 2a, i.e., the changes in the circuit

elements at any given voltage are small except for the initial

increase in kinetic resistance at low voltages. The ohmic

resistances have varied as the cell has cycled, but have always

shown the same trends with voltage. The lower ohmic resistances

for Cell 2 compared to Cell i in Figure 4 may be due to the fact

that Cell 1 was reconditioned shortly before the measurements.

There may also be some differences in the contact resistances.

These aspects will be investigated further.

This circuit gives more consistent kinetic resistance and capaci-

tance values than circuit 2a. An additional advantage of using
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this circuit for data analysis is that the parameters are not
changed appreciably if the spectrum is only taken to 0.0025 Hz

instead of 0.001Hz. The time for taking each complete impedance

spectrum is thus reduced from 3-4 hours to about one. Thus it

may become feasible in the future to use impedance as a routine

tool for monitoring cells for critical uses such as spacecraft if

the circuit elements correlate with life and performance.

As an alternative to the usual equivalent circuits, we have done

preliminary work in modeling the cell following the lead of an

earlier study [5] which used mainframe circuit simulation soft-

ware to define an equivalent circuit with linear and non-linear

elements. We are presently using PSpice, a PC version of this

software [6,7]. If this is successful, we will attempt to

predict the behavior of the cell under a variety of conditions,

including the transient behavior when loads are varied. This

would assist in design of power systems for space applications.

Conclusion

The impedances of Super Ni/Cd cells are being studied as func-

tions of voltage and cycle history. The data is being analyzed

by several methods. The parameters determined using several

simple equivalent circuits cycles have not shown any major

changes during the first 3000 cycles. However, since cell

failure is not expected for some time, it is not yet possible to

determine whether impedance measurements will allow one to

predict cell life or performance.
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TABLES "

Table I. Parameters for some of the data of Fig. 1, ZPLOT program with circuit 2a.

Volt-

age

1.360

1.325

1.257

1.162

Approx.
SOC

0.98

R ohmic,
mObm

1.44

Warburg Slope,
mOhm see "_/*

Capacitance,
Farads

R kinetic,
mOhm

3.76 1600

0.83 1.75 63 4.57 1350

0.44 2.20 14 2.64 1100

0.02 2.87 92 5.88 800

Table II. Parameters for some of the data of Fig. 1, ZFIT-CNLS program with circuit 2e.

Volt-

age

1.360

1.325

1.257

1.162

Approx.
SOC

R ohmic,
mOhm

R kinetic,
mOhm

Exponent of
CPE element

0.98 1.69 252 0.815

0.83 1.82 102 0.817

0.44 2.I7 34 0.690
,r,,

0.02 2.84 101 0.795

CPE Capaci-

tance, Farads
i

874

848

441

453
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